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Abstract

The goal of this project was to develop a mathematical dosimetry model that simulates the inhala-
tion and deposition of ozone through the respiratory tract. The model is based upon a transport-
diffusion partial differential equation which describes the flow of ozone through the respiratory tract
and the diffusion of ozone in the air. The dosimetry model also encompasses the flux of ozone into
the tissue giving total concentrations of ozone deposited in the lung. The model was solved using
the Crank-Nicolson implicit scheme. Within our model, we split the domain into multiple compart-
ments which mimic the different generations of the lungs. This required conservation of mass to be
incorporated. The results generated by the dosimetry model were then linked with data regarding
neurons called C-fibers, which are located in the bottom of the lungs. When exposed to ozone,
C-fibers react and cause physiological changes such as frequency and depth of breathing. These
are results of the body trying to counter the harmful effects of ozone inhalation. Incorporating this
aspect to the inhalation model helps depict a more realistic cycle of ozone uptake.
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Chapter 1

Introduction

The EPA is currently working on a project which looks into the overarching effects of ozone on
the body. Their project is broken down into several smaller projects. We worked in conjunction
with the EPA on the first two parts of their project. The first thing we did on the first part of
the project was look into the anatomy of the lungs. The lungs are comprised of 23 generations
where generation 0 is the trachea. Located in the bottom of the lungs are neurons called C-fibers.
C-fibers react in the presence of ozone and cause a change in both breathing rate and tidal volume
and a measurable change in the Ca2+ ion [2]. The EPA wants to use this reaction to develop a
model of the neural response which would recalculate the new breathing properties then feed back
into the dosimetry model thus creating a cyclical model.

We worked mainly on the development of the ozone dosimetry model. In the model, we wish
to accurately depict the propagation and absorption of ozone throughout the lungs so that it may
be linked with the C-fiber data. In [1] the uptake of formaldehyde was modeled by

∂Ca

∂t
+ U

∂Ca

∂z
= Da

∂2Ca

∂z2
− 2

R
JR

−∂Ct

∂t
+Dt

∂2Ct

∂r2
= KfCt +

(Vmax/Vt)Ct

Km + Ct

with variables defined as follows

Ca vapor concentration in air Ct vapor concentration in the tissue

U advection speed z axial direction through the airways

Da diffusivity of vapor in air (cm2/s) Dt diffusivity of vapor in tissue (cm2/s)

R airway radius r tissue depth

Kf First-order elimination constant (1/s) Km Michaelis - Menten parameter (mg/m3)

Vmax Michaelis - Menten parameter (mg/s) Vt tissue volume (m3)

We adapted their model to our particular problem. Since ozone is a highly reactive compound,
we assume that it reacts instantaneously and that it could never possibly saturate the tissue. From
these assumptions we drop two terms in the second equation: the very first term and the Michaelis
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- Menten term. Our set of equations then becomes:

∂Ca

∂t
+ U

∂Ca

∂z
= Da

∂2Ca

∂z2
− 2

R
JR (1.1)

Dt
∂2Ct

∂r2
= KfCt (1.2)

To better understand what is happening in equation (1.1), we then broke our first equation
down into smaller components. The advection equation is given by:

∂Ca

∂t
+ U

∂Ca

∂z
= 0

This describes how ozone propagates through the lung airways. The diffusion equation is given by:

∂Ca

∂t
= Da

∂2Ca

∂z2

This describes how ozone diffuses through the air in the respiratory tract. It is also clear that − 2
RJR

describes how ozone is being removed from the first equation. So this flux term relates how much
ozone is being absorbed into the tissue surrounding the airways. Using the equation (1.2), we can
find an explicit expression for JR which relates how ozone is being absorbed by the tissue, and thus
allow us to compute solely with the first equation. A simple derivation gives that JR =

ktkg
kg+kt

Ca

where kt and kg are mass transfer coefficients [See appendix ].
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Chapter 2

Methods

2.1 Dosimetry: Advection Diffusion Equation

The equation used for the ozone dosimetry model is simply given by the following:

ut + Cux = Duxx − α̃u (2.1)

where C is the advection velocity coefficient, D is the diffusivity coefficient, and α̃ is a flux coef-
ficient. To begin, the Crank-Nicolson method was used to solve the equation (2.1) in with zero
boundaries conditions. The general form of the Crank-Nicolson is:

un+1
j − unj

∆t
=

1

2

[
Fn+1
j

(
u, x, t,

∂u

∂x
,
∂2u

∂x2

)
+ Fn

j

(
u, x, t,

∂u

∂x
,
∂2u

∂x2

)]
†

Crank-Nicolson employs the trapezoidal rule in time and a centered difference in space. It is an
implicit scheme which means we must algebraicly solve for our solution. This allows for our solution
to be unconditionally stable which allows us to choose any step sizes. Having unconditional stability
prevents the solution from blowing up based on step sizes.

2.2 Discretization of Single Domain

First we discretize equation (2.1):

un+1
j − unj

∆t
=

1

2
D

[(
un+1
j+1 − 2un+1

j + un+1
j−1

∆x2

)
+

(
unj+1 − 2unj + unj−1

∆x2

)]

−1

2
C

[(
un+1
j+1 − u

n+1
j−1

2∆x

)
+

(
unj+1 − unj−1

2∆x

)]
† un

j : The subscript is the spatial index and the superscript is the temporal index
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−1

2
α̃
[
un+1
j + unj

]
We let γ = 1

2D
∆t

∆x2 , λ = 1
4C

∆t
∆x , and α = ∆tα̃ then substitute and expand to get

un+1
j − unj = γun+1

j+1 − 2γun+1
j + γun+1

j−1

+ γunj+1 − 2γunj + γunj−1

− λun+1
j+1 + λun+1

j−1

− λunj+1 + λunj−1

− 1

2
αun+1

j − 1

2
αunj

Next, we move the forward time components to the left-hand side and the current time components
to the right-hand side and factor

(−γ − λ)un+1
j−1 +

(
1 + 2γ +

1

2
α

)
un+1
j + (λ− γ)un+1

j+1 (2.2)

= (γ + λ)unj−1 +

(
1− 2γ − 1

2
α

)
unj + (γ − λ)unj+1 (2.3)

Lastly, we place the coefficients into tridiagonal matrices

A =



1 + 2γ + 1
2α λ− γ 0 · · · 0

− γ − λ 1 + 2γ + 1
2α λ− γ . . .

...

0
. . .

. . .
. . . 0

...
. . . − γ − λ 1 + 2γ + 1

2α λ− γ

0 · · · 0 − γ − λ 1 + 2γ + 1
2α



B =



1− 2γ − 1
2α γ − λ 0 · · · 0

γ + λ 1− 2γ − 1
2α γ − λ . . .

...

0
. . .

. . .
. . . 0

...
. . . γ + λ 1− 2γ − 1

2α γ − λ

0 · · · 0 γ + λ 1− 2γ − 1
2α


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This gives us ‡

Aun+1 = Bun

We then wish to solve for un+1 to get our solution

un+1 = A−1 ·Bun (2.4)

Note that A is never singular because the diagonal entries are always constant and never zero
based upon the nonzero choices of ∆x and ∆t. Brute force calculation of the inverse of a matrix
is very computationally expensive. We used the Thomas Algorithm to compute the inverse of the
tridiagonal matrix [See appendix ]. Initially, we establish values for ∆x and ∆t along with values
of C, D, and α. Then we choose a duration to compute.

2.3 Multiple Domain: Internal Boundary Problems

We wish to numerically solve equation (2.1) but with the domain split into separate compartments.
The split domain encompasses the possibility of having different values for the diffusivity coefficients,
advection constants, and flux terms. The flux term is noticeably different between generations as it
goes like frac2RJR and it is easy to see R varies between generations. To combat this situation, we
chose to implement an averaging technique over the internal domain boundary in order to maintain
continuity. The continuity condition for our physical model is required to maintain conservation of
mass. For simplicity we consider the case where there are only two compartments and generalize
our findings for more compartments.

2.3.1 Discretization of Multiple Domain at an Internal Boundary

Discretizing of the two domain problem is demonstrated as follows, where the diffusivity constants
and flux terms are averaged:

un+1
j − unj

∆t
=

1

2
D1

[
1

2

(
un+1
j+1 − 2un+1

j + un+1
j−1

∆x2
1

)
+

1

2

(
unj+1 − 2unj + unj−1

∆x2
1

)]

+
1

2
D2

[
1

2

(
un+1
j+1 − 2un+1

j + un+1
j−1

∆x2
2

)
+

1

2

(
unj+1 − 2unj + unj−1

∆x2
2

)]

− r1C1

[
1

2

(
un+1
j+1 − u

n+1
j−1

2∆x1

)
+

1

2

(
unj+1 − unj−1

2∆x1

)]
‡Boldface indicates a vector
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− r2C2

[
1

2

(
un+1
j+1 − u

n+1
j−1

2∆x2

)
+

1

2

(
unj+1 − unj−1

2∆x2

)]

− 1

4
α̃1

[
un+1
j + unj

]
− 1

4
α̃2

[
un+1
j + unj

]
where r1 and r2 are as calculated below to minimize the error in crossing the partition.

Let γ1 = 1
2D1

∆t
∆x2

1
, γ2 = 1

2D2
∆t

∆x2
2
, λ1 = 1

4C1
∆t

∆x1
, λ2 = 1

4C2
∆t

∆x2
, α1 = ∆tα̃1, and

α2 = ∆tα̃2 then substitute, expand, and factor to get

(
−1

2
γ1 −

1

2
γ2 − λ1r1 − λ2r2

)
un+1
j−1 +

(
1 + γ1 + γ2 +

1

4
γ1 +

1

4
γ2 +

1

4
α1 +

1

4
α2

)
un+1
j

+

(
−1

2
γ1 −

1

2
γ2 + λ1r1 + λ2r2

)
un+1
j+1

=

(
1

2
γ1 +

1

2
γ2 + λ1r1 + λ2r2

)
unj−1

+

(
1− γ1 − γ2 −

1

4
γ1 −

1

4
γ2 −

1

4
α1 −

1

4
α2

)
unj +

(
1

2
γ1 +

1

2
γ2 − λ1r1 − λ2r2

)
unj+1

Again, we place the coefficients into tridiagonal matrices and solve for the un+1 as in equation
(2.4).

Optimization of Smoothing Coefficients

We wish to minimize the total error from propagating our solution across the internal boundaries
in our domain by finding optimal ratios to multiply the advection terms across the partition by.
We start by defining the discretization of ux at a partition in our domain as ũx given by

ux ≈ ũx = A

[
uj+1 − uj

∆x2

]
+B

[
uj − uj−1

∆x1

]
Then we use Taylor Series to approximate

uj+1 ≈ uj + ∆x2u
′
j +

1

2
∆x2

2u
′′
j +O(∆x3

2)

uj−1 ≈ uj −∆x1u
′
j +

1

2
∆x2

1u
′′
j +O(∆x3

1)

Plugging in the Taylor approximations we obtain
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ũx = A

[
uj + ∆x2u

′
j + 1

2∆x2
2u
′′
j +O(∆x3

2)− uj
∆x2

]
+B

[
uj − uj + ∆x1u

′
j − 1

2∆x2
1u
′′
j +O(∆x3

1)

∆x1

]

= A

[
u′j +

1

2
∆x2u

′′
j +O(∆x2

2)

]
+B

[
u′j −

1

2
∆x1u

′′
j +O(∆x2

1)

]
= Au′j +

1

2
A∆x2u

′′
j +O(∆x2

2) +Bu′j −
1

2
B∆x1u

′′
j +O(∆x2

1)

= (A+B)u′j +
1

2
(A∆x2 −B∆x1)u′′j +O(∆x2

2) +O(∆x2
1)

To minimize the error we need to minimize ux − ũx. Noting that ux = u′j gives

ux − ũx = u′j − (A+B)u′j −
1

2
(A∆x2 −B∆x1)u′′j +O(∆x2

2) +O(∆x2
1)

To minimize the above equation we need that A+B = 1 and A∆x2 −B∆x1 = 0
Solving for A and B we obtain:

A =
∆x1

∆x1 + ∆x2
and B =

∆x2

∆x1 + ∆x2

Thus, by using these ratios, we minimize oscillations from crossing across partitions.

2.4 Non-Uniform Boundary Conditions

We break our boundary conditions into two distinct cases: the inhale and the exhale.

2.4.1 Inhale

We assume that all O3 which reaches the last generation or bottom of the lungs is absorbed
into the tissue. This implies a no flux condition on the -right-hand side. The left hand side of
our system models the trachea and therefore should have an inhalation of ozone. We assume that
the ozone inhaled in has already passed through the nasal cavity. We assume that our system is
inhaling a set concentration of O3, say C0 on the LHS. This means that we need an extra vector
for the initial inhaled O3 so we take our system

Aun+1 = Bun

and see from our general scheme above that the uj−1 terms have coefficients of −λ− γ and λ+ γ
for forward and current time respectively. Thus we add:

(−λ− γ)

C0
...
0

+Aun+1 = (λ+ γ)

C0
...
0

+Bun
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The no flux boundary condition on the RHS implies that ∂u
∂x

∣∣∣∣
x=L

= 0. Discretizing this gives

uj+1−uj

∆x = 0 =⇒ uj+1 = uj .

Plugging this into our scheme gives:

ut = Duxx − Cux − α̃u
un+1
j − unj

∆t
=

1

2
D

[
un+1
j+1 − 2un+1

j + un+1
j−1

∆x2
+
unj+1 − 2unj + unj−1

∆x2

]

− 1

2
C

[
un+1
j+1 − u

n+1
j−1

2∆x
+
unj+1 + unj−1

2∆x

]
− 1

2
α̃
[
un+1
j + unj

]
plugging in uj+1 = uj gives

un+1
j − unj

∆t
=

1

2
D

[
un+1
j − 2un+1

j + un+1
j−1

∆x2
+
unj − 2unj + unj−1

∆x2

]

− 1

2
C

[
un+1
j − un+1

j−1

2∆x
+
unj + unj−1

2∆x

]
− 1

2
α̃
[
un+1
j + unj

]
Letting γ = 1

2
D∆t
∆x2 , α = ∆tα̃ and λ = 1

4
C∆t
∆x implies

=⇒ un+1
j − unj = − γun+1

j + γun+1
j−1 − γu

n
j − γunj−1 − λun+1

j

+ λun+1
j−1 − λu

n
j − λunj−1 −

1

2
αun+1

j − 1

2
αunj

Rearranging terms to separate the different time steps yields:(
1 + γ + λ+

1

2
α

)
un+1
j + (−γ − λ)unj−1 =

(
1− γ − λ− 1

2
α

)
unj + (γ + λ)unj−1

Thus in our matrix, the last entry of the diagonal of the current time matrix should be(
1− γ − λ− 1

2α
)

and on the forward time matrix
(
1 + γ + λ+ 1

2α
)
.
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2.4.2 Exhale

We maintain the no flux on the right hand side, but now we are no longer inhaling the constant
ozone concentration, C0, on the left hand boundary. Now we impose a no flux condition to the LHS

to simulate O3 leaving the respiratory tract. We need ∂u
∂x

∣∣∣∣
x=0

= 0 =⇒ uj−uj−1

∆x = 0 =⇒ uj = uj−1

at x = 0. Using our general scheme :

un+1
j − unj

∆t
=

1

2
D

[
un+1
j+1 − 2un+1

j + un+1
j−1

∆x2
+
unj+1 − 2unj + unj−1

∆x2

]

− 1

2
C

[
un+1
j+1 − u

n+1
j−1

2∆x
+
unj+1 + unj−1

2∆x

]
− 1

2
α̃
[
un+1
j + unj

]
Plugging in the condition uj−1 = uj gives

un+1
j − unj

∆t
=

1

2
D

[
un+1
j+1 − 2un+1

j + un+1
j

∆x2
+
unj+1 − 2unj + unj

∆x2

]

− 1

2
C

[
un+1
j+1 − u

n+1
j

2∆x
+
unj+1 + unj

2∆x

]
− 1

2
α̃
[
un+1
j + unj

]
Using the same substitutions as above yields

un+1
j − unj = γun+1

j+1 − γu
n
j + γunj+1 − γunj − λun+1

j+1 + λun+1
j − λunj+1 − λunj −

1

2
αun+1

j − 1

2
αunj

Separating the time steps as above gives:(
1 + γ − λ+

1

2
α

)
un+1
j + (−γ − λ)un+1

j+1 =

(
1− γ − λ− 1

2
α

)
unj + (γ − λ)unj+1

Thus, the first entry of the diagonal on the forward time matrix becomes
(
1 + γ − λ+ 1

2α
)

and
the first entry on the current time matrix becomes

(
1− γ + λ− 1

2α
)
.

9



Chapter 3

Dosimetry Results

We ran our program using parameters for the human lung. As we did not include a section of our
code to account for nasal scrubbing, which is the removing of toxins from the air through the use of
hairs in the nasal passageways, we view the inhaled concentration of ozone as being the ozone that
remains after nasal scrubbing. When we ran our data, we used the inhaled concentration C0 = 1
and then looked into the patterns that formed for different breathing rates.
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This figure depicts where ozone is absorbed in the lungs for different breathing rates. For
reference, 15 breaths per minute is a resting breathing rate, like that of a person sitting still, while
40 breaths per minute corresponds to someone exercising vigorously. It is clear that our model
predicts that the faster a human breaths, that the deeper the ozone penetrates into the lungs and
that more ozone is absorbed. The spikes that are seen relate to the fact that as ozone moves from
one generation to the next, the radius of the airway get smaller, which increases the amount of
ozone absorbed as the flux into out of the system is inversely proportional to the radius of each
generation. As ozone continues through the generation, it is absorbed.

This depicts the total amount of ozone inhaled by the lungs for each breathing rate.

We also ran our code with parameters given to us by another member of the EPA who developed
an experiment meant to mimic the lining of the lungs. In his experiment, he used a tube with
different sized compartments. It consists of six compartments that are 4 cm long with a radius of
1.03 cm. Between each of these compartments is a smaller compartment of .7 cm in length and .79
cm in radius. He lined the tube with a fluid similar to the lining of the lungs. Using this data, we
ran our code to compare to his results. We tried to recreate one of his plots by running our code
for the same duration of time and using the same flow rates.

11



These plots are our recreation of his plot. Since we assume the tissue depth in the lung is
infinitely thick, we do not include the possibility for the saturation of tissue. However, the experi-
mentalist’s results clearly reflected that his imitation fluid experienced some saturation.

12



Chapter 4

C-Fibers

C-Fibers are neurons located in the lower part of the lungs and are responsible for combating
the damaging effects of ozone inhalation. C-Fibers generate neurological signals which create
physiological changes to the respiratory system. These changes include rapid breathing patterns
and decrease in tidal volume. The dosimetry results allow us to move to a C-Fiber response
model. From literature, [2], we know ozone activates hTRPA1-HEK cells and what response is
given by dosage and duration of exposure. Depicted in Figure 6.1, we see the response curve for
one concentration over time on the left and the maximum responses over all time for multiple
concentrations on the right.

Figure 6.1 Activation of hTRPA1-HEK cells by ozone: Left: Mean ± S.E.M. Ca2+ responses of
hTRPA1-HEK (black line, n=447), hTRPV1-HEK (gray line, n=188) and ntHEK cells (broken line, n=389)
to vehicle and ozone (3 µM). Drugs were applied for 60 s (black line). Right: Dose-response relationships
of Ca2+ responses of hTRPA1-HEK (black squares), hTRPV1-HEK(gray circles) and ntHEK cells (open
triangles) to ozone (300 nM to 30 µM) (data comprise > 188 cells). Data represent the maximum response
during the 60 s agonist treatment taken from mean cell response versus time curves (note that the S.E.M. is
contained within symbol).
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We combined the data in Figure 6.1 to generate a surface which takes ozone concentration and time as
inputs and outputs the change in the Ca2+ ion.

The data given by the right curve in Figure 6.1 was smoothed by an interpolation polynomial.
We developed a hypothesis about how the C-Fibers would respond in vivo to ozone. The hypothesis

assumes that the C-Fibers located in each generation would respond to the total amount of ozone absorbed
in that generation per breath. The response would give a maximum percent change in the Ca2+ ion and
this maximum response would be compared to each of the maximum responses in the proceeding breaths.
Concisely, a set of global maximums are developed from the local maximum responses developed in each
generation for each breath. These global maximums determine the overall C-Fiber response for the body.
However, there is little or no experimental data to bolster this hypothesis. Using this hypothesis, we devel-
oped two C-Fiber response curves.

Figure 6.2 The left response curve is a single initial dose of (3 µM) O3 over 44 breaths. The right response
curve is 10 consecutive doses of (3 µM) O3 over 44 breaths starting at breath 1. The data generated by these
curves give information to the body so that it can make physiological changes such as shallow, rapid breaths.
This gives a relation between the dosimetry model data and the neural response model which is still yet to
be developed.
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Chapter 5

Further Developments

Currently, we have developed code that will run the dosimetry model with internal boundaries and various
external boundary conditions for any given lung parameters. With quick substitutions for the human lung
parameters (i.e. radius, number of generations, length of each generation) our code can run the same
transport-diffusion model for any other animal, as is evidenced by our running data for the EPA’s experiment.
This is beneficial when experimental data is gathered using animals such as rats or monkeys.

With the work completed on the dosimetry model and C-fiber data, the EPA will development a third
part of the full model. The third component of the model pertains to the body’s physiological reaction to
the damaging effects of ozone. The response generated by the C-fibers causes the body to increase breathing
rates and decrease tidal volume. The EPA aims to use the C-fiber data to create a neurological response
model which will recalculate the parameters of breathing given an ozone dosage. From there the dosimetry
model can be rerun with the new breathing properties and circulated for long term exposures.
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Appendix A

Flux Term Derivation

Our model is given by

∂Ca
∂t

+ U
∂Ca
∂z

= Da
∂2Ca
∂z2

− 2

R
JR

Dt
∂2Ct
∂r2

= KfCt

where the flux term JR couples the two equations together. An expression for JR can be derived explicitly.
According to [1] the air-tissue interface is linked by Ca:t and Ct:a, where the first is the concentration on the
air side of the air-tissue interface, and the second is on the tissue side. They are related by Ct:a = Pt:aCa:t,
where Pt:a is a partition coefficient. It is given that JR = kg(Ca−Ca:t), where kg is a mass transfer coefficient.
JR is also given by JR = ktCa:t+ki, where both kt and ki are mass transfer coefficients. However, we assume
steady-state transport of ozone, so ki → 0. We also know that Ca:t =

kg
kg+kt

Ca.

We now work with our second equation:

Dt
∂2Ct
∂r2

= KfCt

With boundary conditions
Ct(0) = Ct:a = Pt:aCa:t

and
Ct(L) = 0

Where L is the tissue depth. The first assumption comes from the the fact that the concentration of ozone
has to be continuous across the air-tissue interface and the second comes from assuming that ozone never
diffuses all the way through the tissue since it is so highly reactive. For simplicity, we assume L → ∞ and
therefore lim

x→∞
Ct(x) = 0

We know that we can make this assumption from a simple mathematical proof that the depth of tissue
does not affect the total concentration in the tissue. We know that the total concentration in tissue at some

given time is given by Ct =
L∫
0

Ctdr. If the total concentration does not depend on L, then we need that

d
dLCt = d

dL

L∫
0

Ctdr = 0. By the Fundamental Theorem of Calculus we have that d
dL

L∫
0

Ctdr = Ct(L). But

from our assumption that Ct(L) = 0, i.e. that the concentration of ozone at the end of the tissue is zero.
We have that the total length of tissue L does not matter.

We proceed and solve

Dt
∂2Ct
∂r2

= KfCt
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From ODE theory, we know that the answer is

Ct(r) = Ae

√
Kf
Dt

r
+Be

−
√

Kf
Dt

r

Taking a derivative yields

∂Ct
∂r

=

√
Kf

Dt
Ae

√
Kf
Dt

r −
√
Kf

Dt
Be
−
√

Kf
Dt

r

Letting γ =
√

Kf

Dt
gives

Ct(r) = Aeγr +Be−γr

∂Ct
∂r

= γAeγr − γBe−γr

Using the B.C. lim
x→∞

Ct(x) = 0

0 = lim
x→∞

Aeγx +Be−γx =⇒

0 = lim
x→∞

Aeγx

Since lim
x→∞

eγx is non-zero this implies that A = 0 therefore using the B.C. Ct(0) = Pt:aCa:t gives

Pt:aCa:t = B

Hence:

Ct = Pt:aCa:te
−
√

Kf
Dt

r

Setting our two JR equations equal and plugging in our B we obtain kt:

JR = ktCa:t = DtγPt:aCa:t

kt =
√
DtKfPt:a

Thus,

JR =
ktkg
kg + kt

Ca
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Appendix B

Thomas Algorithm

The Thomas algorithm, also known as the tridiagonal matrix algorithm (TDMA), is used to solve tridiagonal
matrix equations with O (n) operations rather than O

(
n3
)

operations using Gaussian elimination.
Matlab code∗:

function x = thomasAlgo3(a,b,c,d)

% a, b, c are the column vectors for the compressed tridiagonal matrix,

% d is the right vector

n = length(b); % n is the number of rows

% Modify the first-row coefficients

c(1) = c(1) / b(1); % Division by zero risk.

d(1) = d(1) / b(1); % Division by zero would imply a singular matrix.

for i = 2:n

id = 1 / (b(i) - c(i-1) * a(i)); % Division by zero risk.

c(i) = c(i)* id; % Last value calculated is redundant.

d(i) = (d(i) - d(i-1) * a(i)) * id;

end

% Now back substitute.

x(n) = d(n);

for i = n-1:-1:1

x(i) = d(i) - c(i) * x(i + 1);

end

∗http://wikipedia.org/wiki/Thomas_algorithm
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